Dissociative chemisorption and energy transfer for methane on Ir(111).
نویسندگان
چکیده
A 3-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for CH(4) incident on Ir(111) under varied nonequilibrium and equilibrium conditions. One Ir surface oscillator and the molecular vibrations, rotations, and translational energy directed along the surface normal are treated as active degrees of freedom in the 14 dimensional microcanonical kinetics. The threshold energy for CH(4) dissociative chemisorption on Ir(111) derived from modeling molecular beam experiments is E(0) = 39 kJ/mol. Over more than 4 orders of magnitude of variation in sticking, the average relative discrepancy between the beam and theoretically derived sticking coefficients is 88%. The experimentally observed enhancement in dissociative sticking as beam translational energies decrease below approximately 10 kJ/mol is consistent with a parallel dynamical trapping/energy transfer channel that likely fails to completely thermalize the molecules to the surface temperature. This trapping-mediated sticking, indicative of specific energy transfer pathways from the surface under nonequilibrium conditions, should be a minor contributor to the overall dissociative sticking at thermal equilibrium. Surprisingly, the CH(4) dissociative sticking coefficient predicted for Ir(111) surfaces at thermal equilibrium, based on the molecular beam experiments, is roughly 4 orders of magnitude higher than recent measurements on supported nanoscale Ir catalysts at 1 bar pressure, which suggests that substantial improvements in catalyst turnover rates may be possible.
منابع مشابه
Microcanonical unimolecular rate theory at surfaces. III. Thermal dissociative chemisorption of methane on Pt(111) and detailed balance.
A local hot spot model of gas-surface reactivity is used to investigate the state-resolved dynamics of methane dissociative chemisorption on Pt(111) under thermal equilibrium conditions. Three Pt surface oscillators, and the molecular vibrations, rotations, and the translational energy directed along the surface normal are treated as active degrees of freedom in the 16-dimensional microcanonica...
متن کاملMicrocanonical unimolecular rate theory at surfaces . I . Dissociative chemisorption of methane on Pt „ 111 ...
A model of gas–surface reactivity is developed based on the ideas that ~a! adsorbate chemistry is a local phenomenon, ~b! the active system energy of an adsorbed molecule and a few immediately adjacent surface atoms suffices to fix microcanonical rate constants for surface kinetic processes such as desorption and dissociation, and ~c! energy exchange between the local adsorbate–surface complexe...
متن کاملVibrational Activation of Methane Chemisorption: The Role of Symmetry.
Quantum state-resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH4 on Pt(111). IR-IR double resonance excitation in a molecular beam is used to prepare CH4 in all three different vibrational symmetry components A1, E, and F2 of the 2ν3 antisymmetric stretch overtone vibration. Methyl dissociation products ...
متن کاملBond-Selective and Mode-Specific Dissociation of CH3D and CH2D2 on Pt(111).
Infrared laser excitation of partially deuterated methanes (CH3D and CH2D2) in a molecular beam is used to control their dissociative chemisorption on a Pt(111) single crystal and to determine the quantum state-resolved dissociation probabilities. The exclusive detection of C-H cleavage products adsorbed on the Pt(111) surface by infrared absorption reflection spectroscopy indicates strong bond...
متن کاملMicrocanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100).
A three-parameter microcanonical theory of gas-surface reactivity is used to investigate the dissociative chemisorption of methane impinging on a Ni(100) surface. Assuming an apparent threshold energy for dissociative chemisorption of E(0)=65 kJ/mol, contributions to the dissociative sticking coefficient from individual methane vibrational states are calculated: (i) as a function of molecular t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 20 شماره
صفحات -
تاریخ انتشار 2005